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Motivated by recent results of Nth order muffin-tin-orbital �NMTO� implementation of density-functional
theory, we re-examine low-temperature ground-state properties of the antiferromagnetic insulating phase of
vanadium sesquioxide V2O3. In fact, the hopping matrix elements within the nearest-neighbor vanadium pair,
obtained by the NMTO-downfolding procedure, are strongly reduced compared to those previously obtained
using the downfolding procedure of Castellani et al. �Phys. Rev. B 18, 4945 �1978�; 18, 4967 �1978�; 18,
5001 �1978��. This could imply a breakdown of the molecular picture. We use the NMTO hopping matrix
elements as input and perform a variational study of the ground state. We find that the formation of stable
molecules throughout the crystal is not favorable in this case, though the experimentally observed magnetic
structure can still be obtained in the atomic variational regime. However, the resulting ground state �two t2g

electrons occupying the degenerate eg doublet� is in contrast with many well-established experimental obser-
vations. We discuss the implications of this finding in the light of the importance of nonlocal electronic
correlations in V2O3.
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I. INTRODUCTION

Vanadium sesquioxide V2O3 holds a very distinct place
among the variety of physical systems exhibiting a metal-
insulator transition �MIT�. This compound is considered as a
prototype of a Mott-Hubbard system: it displays a MIT from
a paramagnetic metallic �PM� phase to an antiferromagnetic
insulating �AFI� phase at low temperatures ��150 K�, and a
transition from a PM phase to a paramagnetic insulating �PI�
phase at a higher temperature ��500 K�.1–4 In order to un-
derstand several of its properties, the knowledge of its crystal
structure plays a fundamental role: in the paramagnetic phase
V2O3 can be characterized by a corundum cell in which V
ions are arranged in V-V pairs along the c-hexagonal axis
and form a honeycomb lattice in the basal ab plane. All
vanadium ions are equivalent: each V3+ ion has 3d2 configu-
ration and is surrounded by a nearly perfect oxygen octahe-
dron. However, a slight displacement in vanadium ions away
from the centers of their octahedra is at the origin of a small
trigonal distortion, which removes the threefold degeneracy
of the t2g manifold. The energy splitting between nondegen-
erate a1g orbital and doubly degenerate eg orbitals is �t. A
first-order structural transition takes place upon cooling, and
the system becomes monoclinic. Simultaneously, a peculiar
antiferromagnetic �AFM� spin order emerges with ferromag-
netically ordered planes, antiferromagnetically stacked
perpendicularly to the monoclinic bm axis.

In late seventies, Castellani, Natoli, and Ranninger5

�CNR� developed a unique realistic description of V2O3.
They realized that the peculiar structure observed in the AFI
phase could not be explained in terms of a single-band Hub-
bard model, and that the introduction of the orbital degrees
of freedom into the model was a necessary ingredient in
order to explain the experimental findings. The CNR model

has been considered a reliable model of V2O3 until the end
of the nineties, when several experiments, for e.g., x-ray ab-
sorption spectroscopy �XAS� by Park et al.6 and nonresonant
magnetic x-ray scattering by Paolasini et al.7 demonstrated
that this model was in need of corrections. The failure of the
CNR model came from the underestimation of the value of
Hund’s coupling �J�0.2–0.3 eV�, entailing a spin state S
=1 /2 on the V3+ ions. Instead, the experiments mentioned
above independently showed that each vanadium ion has a
spin S=1, an observation that called for a deep revision of
the theoretical description of V2O3. For this reason, many
theoretical works followed.8–12

In primis, the LDA+U calculation of Ezhov et al.8 sug-
gested that the S=1 state with no orbital degeneracy and a
purely eg occupancy is a possible candidate for the low-
temperature antiferromagnetic phase. More elaborate studies
on the nature of the MIT in V2O3 have been proposed re-
cently by means of LDA+DMFT approaches.11,12 In particu-
lar, Poteryaev et al.12 showed that crystal field, Coulomb
correlations, and orbital degrees of freedom are strongly in-
terrelated: in their solution the trigonal distortion, strongly
enhanced by correlations, acts as an external field in the or-
bital Hilbert space, thereby producing drastic modifications
in the orbital hybridization across the transition. This cor-
rects the drawbacks of a purely �egeg� atomic occupancy, as it
is at least qualitatively in keeping with the result of x-ray
absorption spectroscopy by Park et al.,6 where an evidence
of a variable occupation of a1g orbitals in the three phases
was found �25% in the PM phase, 20% in the PI phase, and
17% in the AFI phase�.

A completely different approach was proposed by Mila et
al.,13 who adapted an old idea by Allen14 that magnetic and
optical properties of all phases of V2O3 show a loss of V3+

ion identity, and suggested that a good candidate for the
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ground state is a state in which vanadium S=1 ions form
vertical bonds �molecules� with total spin Stot=2 and orbital
�correlated� occupancy of the kind ��egeg ;ega1g�
+ �ega1g ;egeg�� /	2. Here the notation refers to the four elec-
trons occupying the vertical molecule: two electrons on one
of the two atoms of the molecule and the other two on the
other atom. In our previous study9 we showed that such a
correlated molecular state is stabilized throughout the crystal
if the nonlocal correlation energy due to delocalization of the
electrons within the molecule is big compared to the in-plane
interaction energy. The estimate for this correlation energy is

90 meV /atom,15 if computed with V t2g Wannier func-
tions obtained by tight-binding �TB� fit to local-density ap-
proximation �LDA� linearized augmented plane wave
�LAPW� calculation of Mattheiss16 by downfolding proce-
dure devised by CNR.5 Later, Tanaka10 further improved the
molecular wave function by proposing that single-ion rela-
tivistic spin-orbit �SO� interaction plays an important role in
determining both the ground state and the low-energy exci-
tation spectrum of V2O3. In such a case the orbital angular
momentum is unquenched and the molecular wave function
is expressed in terms of complex orbitals.

Such a complex orbital molecular state is in agreement
with most of the experimental results, whereas this is not the
case for the atom-based correlated models.8,11,12 Namely, the
molecular state can account for the large contribution from
the orbital magnetic moment, �L��−0.5 �B, observed in the
nonresonant magnetic scattering experiments by Paolasini et
al.7 On the contrary, a real atomic �eg

1eg
2� ground state contra-

dicts the observation of unquenched angular momentum,
since it gives �L�=0. Even introducing the SO coupling, the
situation does not improve. In fact, in terms of the complex
orbital eg

�= 1
	2

��eg
1− ieg

2�, the new ground state �eg
+eg

−� still
gives a zero expectation value for the orbital moment, due to
its invariance under complex conjugation �modulo an overall
sign�.

As a consequence, another experimental fact cannot be
explained using the �eg

1eg
2� ground-state solution, namely, the

observation of resonant �1,1 ,1�m monoclinic reflection by
Paolasini et al.7 It is now well established in Refs. 10 and 17
that this reflection is of magnetic origin. Specifically, it is due
to a mixture of contributions of magnetic octupole and mag-
netic quadrupole moments of V atom. The octupole moment
results from a quadrupole-quadrupole �E2E2� x-ray transition
of even parity, corresponding to the operator ��L � r̂� � r̂�q

3,
whereas the quadrupole moment results from a dipole-
quadrupole �E1E2� x-ray transition of odd parity, related to
the spherical tensor �L � r̂�q

2. Since the resonant scattering
amplitude is related to the average values of both these op-
erators in the ground state, it vanishes if computed in the
�eg

+eg
−� state, while, when evaluated in the complex orbital

molecular state of Ref. 10, it describes well both energy and
azimuthal experimental scans.

A further independent argument pointing toward the mo-
lecular state of V2O3 comes from the particular direction of
the magnetic moment,15 which lies in the plane orthogonal to
the twofold symmetry axis of the I2 /a space group of the
monoclinic cell. Why the magnetic moment is pointing along
this direction cannot be understood from the symmetry con-
sideration of the atomic state. As the local symmetry at the

atomic site �C1� is the lowest possible one, �i.e., no symme-
try at all�, the atomic magnetic moment could point any-
where in space. Indeed atom-based calculations17 found also
a component parallel to the twofold symmetry axis, confirm-
ing that in this case its direction is unconstrained. On the
other hand, for a molecular state this twofold axis multiplied
by the time-reversal operator is an exact symmetry of the
system, thus constraining the moment to be orthogonal to it.

The molecular framework has been also confirmed by the-
oretical variational study based on the t2g transfer integrals
obtained by CNR-downfolding procedure5 from O 2s, 2p
and V 3d tight-binding parameters of Mattheiss,16 in which
the stability of the molecular state for reasonable values of
Coulomb and exchange parameters was obtained.9 These V
t2g transfer integrals are given in Table I together with those
derived originally by CNR �Ref. 5� by downfolding from as
TB fit by Ashkenazi and Cuchem19 and also using oxygen
NMR data. Yet recently, a new set of t2g Wannier-function
parameters has been proposed for V2O3,18 on the basis of the
state-of-the-art Nth order muffin-tin-orbital �NMTO� method
by Andersen and Saha-Dasgupta.20,21 The NMTO method
provides a way to derive an effective band Hamiltonian with
only few energy-selected Wannier-type orbitals by integrat-
ing out all others less important degrees of freedom. The
main improvement provided by the NMTO technique in
modeling Wannier-type functions comes from the fact that
the functions obtained by this technique are more localized
on a single site than those obtained by the fitting procedure
of the LAPW bands, as real Wannier functions should be. In
the case of the TB modeling of V2O3, this approach shows
that the oxygen contribution to hopping matrix elements and
renormalization effects due to hopping paths via the eg tails,
in addition to direct V-V t2g-hopping interaction, are equally
important and significantly modify the values of the TB pa-
rameters. These contributions were only partially taken into
account in Refs. 5 and 16. Consequently, the t2g transfer
integrals obtained by the NMTO-downfolding technique dif-
fer significantly from those obtained by CNR downfolding
�Table I�. In particular, both vertical hopping integrals � and
� �defined in Ref. 9� are reduced in the NMTO set.

Our aim is to check whether the experimentally correct
complex molecular wave function10 is still stabilized by the
new set of parameters. However, as the molecular correlation
energy was found to be proportional to the product of � and

TABLE I. Transfer integrals �in eV� between vanadium t2g Wan-
nier functions derived by downfolding using the CNR procedure
�first two columns� �Refs. 5 and 16� and the NMTO procedure �Ref.
18�. Notations are explained in Table II in Ref. 9.

Castellani et al. �Ref. 5� Mattheiss �Ref. 16�
NMTO

�Ref. 18�

� 0.2 0.2 0.06

� −0.72 −0.82 −0.51

−� −0.13 −0.14 0.08

� −0.04 −0.05 −0.21

	 0.05 0.05 −0.03

−
 −0.23 −0.27 −0.26
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�, one might suspect that the molecular stability will be lost
with the new set of parameters.

The structure of the paper is as follows. In Sec. II we
present a brief outline of the results of our previous work,
Ref. 9, and set the notations. We then minimize the effective
Hamiltonian with the NMTO parameters in Sec. III and per-
form a variational calculation with two kinds of variational
functions: molecular and atomic. Finally, in Sec. IV, we dis-
cuss the result in the light of the experimental facts and try to
draw some conclusions for the physics of V2O3.

II. MODEL, FORMALISM, AND NOTATIONS

We assume that the low-temperature AFI phase of V2O3
can be described by a superexchange spin-orbital Hamil-
tonian, HSE, that can be derived perturbatively from a three-
fold degenerate t2g Hubbard Hamiltonian, HH, as done in
Ref. 9, to which we refer for further detail. We can write the
Hubbard Hamiltonian as

HH = Ht + HU, �1�

where the kinetic term Ht=� j j��mm�	tjj�
mm�cjm	

+ cj�m�	 includes
a summation over nearest-neighbor sites, over orbital
�m ,m�=1,2 ,3�, and spin �	= ↑ ,↓� indexes. HU describes
the on-site Coulomb interactions U1 �for electrons in the
same orbital� and U2 �for electrons in different orbitals� and

Hund’s coupling J. The hopping integrals tjj�
mm� �m ,m�

=1,2 ,3� can be expressed via a reduced set of parameters: �
and � for out-of-plane hopping �i.e., within the molecule�, �,
�, 	, and 
 for in-plane hopping. In Table I we present the
numerical values of hopping matrix elements obtained by
CNR,5 by Mattheiss16 through a fitting procedure of the
LAPW calculations, �both obtained by using the CNR pro-
cedure for downfolding�, and by Poteryaev et al.12 through
the NMTO-downfolding technique. We shall later use these
parameters in the variational analysis, where we compare
various ground-state energies. For the Coulomb repulsion U2
and Hund’s coupling J Ezhov et al.8 and Mila et al.13 sug-
gested J�1.0 eV, U2�2.5 eV. Recent optical studies of
Qazilbash et al.,22 however, yielded a smaller value for the
Hund’s coupling J=0.5 eV. We have described already9 how
the range of these two parameters is subjected to large fluc-
tuations in the literature. In what follows, we shall fix U2
�2.5 eV and consider a range of J
0.4–1.0 eV.

We further assume, as found experimentally, that at each
site two t2g electrons are bound into a S=1 state. We, there-
fore, derive from HH an effective Hamiltonian, Heff=HSE
+Htrig to describe the insulating phase of V2O3, where HSE
and Htrig are given by

HSE = −
1

3

1

U2 − J
�ij

�2 + S� i · S� j�Oij
�1�

−
1

4

1

U2 + 4J
�ij

�1 − S� i · S� j�Oij
�2�

−
1

12

1

U2 + 2J
�ij

�1 − S� i · S� j�Oij
�3�, �2�

Htrig = + � jm	
�mnjm	. �3�

Here Sj =1 is the spin at site j and njm	 describes the occu-
pation of the m orbital on site j by an electron with spin 	,
whereas the Oij

�k� are orbital exchange operators presented in
Appendix C of Ref. 9. Multiplied by the corresponding pref-
actors − 1

3
1

U2−J , − 1
4

1
U2+4J , or − 1

12
1

U2+2J , they define the effective
value of the exchange that depends on the orbital occupation
of the two sites i and j along the bond direction �ij�. The spin
terms can be simply considered as projectors on the FM and
AFM state. The term Htrig describes the trigonal distortion
that splits the three degenerate two-electron states: �eg

1eg
2�

�0�, �a1geg
1��−1�, and �a1geg

2��1�. The splitting energies
due to this distortion are defined as �1=�2=0 and �3=�t
�0 for orbitals m=1, 2, and 3, respectively. �t is comparable
in magnitude to the hopping integrals, which allows us to
treat the term Htrig on the same level as HSE.

III. RESULTS

In this section, we compare orbital and magnetic ground-
state configurations of the effective Hamiltonian Heff as ob-
tained by a variational analysis with CNR and NMTO down-
foldings to t2g Wannier functions.

The trial wave function can be most generally written as

��� = n��n� = n��n
o���n

s� , �4�

where ��n
o� describes the orbital part and ��n

s� refers to the
spin part of the wave function on a site n.

In the following, we shall use as a variational wave func-
tion ��n� either an atomic state or a molecular state, with n
labeling an atomic or a molecular site, respectively. In both
cases, the average value of the Heff over the corresponding
state takes the form

��n���m�Heff��m���n� = ��n
o���m

o �Heff
o ��m

o ���n
o���n

s �

���m
s �Heff

s ��m
s ���n

s� . �5�

This factorization is possible only in the mean-field approxi-
mation, in which single-site wave functions, ��n�, otherwise
entangled, factor into orbital ��n

o� and spin ��n
s� parts. By this

we explicitly neglect any coupled spin-orbit fluctuations. The
spin averaging is straightforward: for a ferromagnetic �FM�
bond �S�n ·S�m+2�HF=3 and �S�n ·S�m−1�HF=0, while for an an-
tiferromagnetic bond, �S�n ·S�m+2�HF=1 and �S�n ·S�m−1�HF
=−2. Orbital averaging in Eq. �5�, however, requires some
algebra and is discussed in Ref. 9 for both atomic and mo-
lecular states. In the following, we will first average overall
possible ordered magnetic structures, and then for each type
of magnetic ordering find an orbital configuration that mini-
mizes the total energy by means of a variational procedure.
Note, that we limit the number of magnetically ordered
structures only to those that can be realized on the corundum
unit cell.

As a preliminary step, before the full minimization of the
variational energy �Eq. �5��, we can compare the correlation
energy of the ferromagnetic state of the vertical pair,
2�� / �U2−J�, with the superexchange energy in the basal
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plane, in order to have an idea about the relative order of
magnitude of atomic and molecular energies. We remind that
the correlation energy is defined as the difference between
the exact ground-state energy, EV=−��−��2 / �U2−J�, and
the ground-state energy in the Hartree-Fock approximation,
EV

HF− ��2+�2� / �U2−J�. The superexchange energy in the
basal plane was approximated by ��2+
2� / �U2−J� in Ref. 9,
where we assumed that the contributions from � and 	 hop-
ping matrix elements were negligible, and should rather be
written as ��2+
2� / �U2−J� with the NMTO values of Table
I, that shows that � is no more negligible, whereas � is.

There are two qualitatively different regimes of solutions.
If the correlation energy is larger, the most appropriate varia-
tional wave function for the whole Heff must be constructed
in terms of molecular units with Sz

M =2 and orbital part ��n
o�

given by

���
o �ab =

1
	2

���1�a�0�b + ��1�b�0�a� , �6�

where a and b define two sites of the vertical molecule, and
�1 and 0 denote the value of z component of the pseudospin
operator defining the orbital state.

If, instead, the values of the exchange energy in the basal
plane are larger than the correlation energy, the appropriate
variational wave function is atomiclike and should be written
as

��i
o� = cos �i�0�i + sin �i�cos �i�1�i + sin �i�− 1�i� . �7�

Contrary to the molecular case, this wave function allows all
three states �0�i, �1�i, and �−1�i to be present without any a
priori restriction on their relative weight. The relative weight
of these three states is then determined through the minimi-
zation procedure with respect to the variational parameters �i
and �i.

As quantitatively shown in Ref. 9, Eqs. �6.19� and �6.20�,
in order to determine the nature �atomic or molecularlike� of
the ground state, we need to compare the absolute value of
the ratio of the molecular correlation energy �per atom� and
the in-plane exchange energy, computed with Mattheiss’s pa-
rameters and new NMTO set of parameters. We obtain
�� / ��2+
2�=1.7 and 0.26 for Mattheiss and NMTO set, re-
spectively. The strong reduction in this ratio for NMTO set
suggests that NMTO parameters do not favor the formation
of the molecular state.

There are a few possible reasons for such large difference
in the results of the two approaches. The discrepancy may be
the consequence of the fact that NMTO method more accu-
rately treats the effect of trigonal distortion on hopping ma-
trix elements. In the approach of Mattheiss the influence of
the trigonal distortion on matrix elements was assumed to be
small and was neglected, while in the NMTO approach, the
a1g−a1g hopping along the vertical bond, �, decreases sig-
nificantly with the increase in the trigonal distortion.

After this preliminary analysis we can now perform the
minimization of the effective Hamiltonian with NMTO set of
parameters and compare the results with the equivalent mini-
mization procedure performed in Ref. 9 with Mattheiss’s pa-
rameters. As in Ref. 9, we examine the following four mag-

netic phases: �1� AFM phase—all three in-plane bonds are
antiferromagnetic; �2� RS phase—one in-plane bond is fer-
romagnetic and the other two are antiferromagnetic; �this is
the spin structure experimentally observed in V2O3�; �3�
ARS phase—one in-plane bond is antiferromagnetic and the
other two are ferromagnetic; �4� FM phase—all three in-
plane bonds are ferromagnetic.

Figure 1 shows the plot of energy per V ion, EV, obtained
with �a� molecular and �b� atomic variational functions using
the NMTO set of parameters as a function of Hund’s cou-
pling J and for U2=2.5 eV. A direct comparison between
Fig. 1�a� and Fig. 1�b� shows that for all values of J the
energy of the atomic state is lower than the energy of the
molecular state. This confirms what we had more qualita-
tively suggested above—that the molecular state is not sup-
ported by the NMTO calculations.

The region of stability of experimentally observed RS
magnetic structure is again rather small, as we have obtained
previously with Mattheiss’s parameters for the molecular
state. In this case, this region also shifts toward a lower value
of Hund’s coupling, J
0.54–0.62 eV. This value is close to
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FIG. 1. �Color online� The energy per V atom as a function of J
for different spin configurations �AFM, RS, ARS, and FM type�.
The hopping parameters are defined by NMTO method �Ref. 18�
trigonal splitting �t=0.27 eV. In panel �a� the minimization is per-
formed with molecular trial wave function �Eq. �6��, while in panel
�b� the minimization is performed with atomic trial wave function
�Eq. �7��.

PERKINS, DI MATTEO, AND NATOLI PHYSICAL REVIEW B 80, 165106 �2009�

165106-4



J=0.5 eV, extracted from optical studies of Qazilbash et
al.,22 as well as to the old value J=0.59 eV given by Tanabe
and Sugano23 by fitting optical spectra and at odds with the
much bigger values �J�1 eV� recently used in the
literature.8

For the orbital structure, the minimization gives the val-
ues of the orbital-mixing angles �i
0 and �i
� /2 at all
sites for the RS configurations, i.e., an orbital wave function
��i

o�= �0�i�eg
1eg

2�. This is the solution without orbital degen-
eracy as found by Ezhov et al.8 The absence of a1g electrons
in the solution can be understood as follows: the small gain
in the kinetic energy due to the significant reduction in the
hopping matrix elements in the NMTO calculations cannot
compensate the effect of the trigonal splitting, which pushes
a1g orbital to higher energies and favors the occupancy of the
�0� states on all the atoms. As a result, the ground state is a
nondegenerate eg doublet and the orbital degeneracy is com-
pletely lifted, contrary to the ground states found in Refs. 9
and 13, where the important a1g contribution to the kinetic
energy in the molecule due to the a1g−a1g hopping term �
allowed a finite occupancy of a1g orbitals. It is worth men-
tioning that even with Mattheiss set of parameters it was
possible to find a ground state �egeg�, however, only for
larger values of the trigonal splitting �t�0.4 eV.

One more remark: due to the competing presence of the
AFM, ARS, and FM phases, the stabilization energy of the
RS atomic solution is rather small, the first excited state is
located about 2 meV above the ground state. Despite all
differences between the ground-state solutions obtained with
NMTO and Mattheiss’s parameters, this is a common feature
which is apparent from Fig. 1 and from Figs. 5 and 8 of Ref.
9: both the stability region and the stabilization energy for
the ground state with RS magnetic structure are much re-
duced in contrast with the spin S=1 /2 case considered by
CNR �Ref. 5�. Finally, as one can see from Fig. 1�b�, the RS
spin structure can also be realized in the molecular state with
J
0.92–0.96 eV, which, however, is higher than com-
monly accepted range of Hund’s coupling values.

To illustrate more completely the properties of the effec-
tive spin-orbital model, Eq. �5�, in Fig. 2 we present its
ground-state phase diagram in the parameter space specified
by � /
 and J /U2. All other parameters are taken from the
NMTO set and we consider the trigonal splitting �t
=0.27 eV. From Fig. 2 it can be seen that the ground state is
successively changed from AFM to FM phase as the Hund’s
coupling increased. In order to gain maximum energy from
orbital-dependent exchange terms, more complicated mag-
netic structures are realized at the intermediate values of J,
and that RS structure is stabilized in a strip between AFM
and ARS phases.

The examination of orbital structure for various ground
states, presented on the phase diagram �Fig. 2�, has shown
that orbital configurations in RS and ARS states are basically
the same: the orbital degeneracy is lifted and all states are
occupied by only eg electrons. For the AFM and FM phases
we find a continuum of orbital degeneracies with any mixing
angles �i and �i, depending on value of the ratio J /U2 and
� /
.

This phase diagram is very different from other phase
diagrams, which have been proposed for AFI of V2O3, i.e.,

from that of CNR model,5 from the molecular model of Mila
et al.,13 and from that proposed by us in Ref. 9. The phase
space occupied by RS phase is larger, and it happens at the
realistic intermediate values of J /U2.

IV. DISCUSSION

In this paper we have studied the ground state of the ef-
fective spin-orbital Hamiltonian ��2�� and compared the re-
sults obtained by CNR and NMTO downfoldings to t2g Wan-
nier functions. We computed the mean-field phase diagram
and showed that the RS structure is realized at realistic in-
termediate values of the Hund’s coupling. The phase space of
the RS phase is significantly enlarged compared to our pre-
vious study,9 although the gain in energy compared to com-
peting phases is again small, on the order of �2 meV. How-
ever, we have shown that the formation of stable molecules
throughout the crystal is not favorable in this case. For all
values of the Hund’s coupling the minimization procedure
with an atomic wave function gives a lower energy than in
the minimization with a molecular wave function. Moreover,
the analysis of the orbital structure of the ground state shows
that the two t2g electrons occupy the degenerate eg doublet.
This latter finding is not only in disagreement with the ex-
periment of Park et al.,6 as detailed in Sec. I but also with the
finding that there is no detectable anisotropy of the Knight
shift and no observable quadrupole splitting of the NMR
spectrum,24 which would require an almost equal weight of
the three t2g electrons, as obtained in the old molecular so-
lution. Therefore, the characteristics of the ground-state con-
figuration found starting from the NMTO set of hopping pa-
rameters �nonmolecular, purely eg orbital filling� are rather
disappointing, being in contrast with some well-established
experimental facts.

We might wonder what is the origin of such a discrep-
ancy, noticing, in particular, that the correct solution was
found with the previous CNR-type t2g transfer integrals.
There are two possible alternative reasons.
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FIG. 2. �Color online� Phase diagram in the �� /
 , J /U2� pa-
rameter plane. Other hopping parameters are taken from NMTO set
from Table I. Here AFM, FM, RS, and ARS denote the correspond-
ing types of magnetic orders. Solid lines indicate the phase
boundaries.
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(a) The Hubbard model does not represent a minimal
model for V2O3: undoubtedly, the one-body parameters de-
rived from NMTO orbitals seem to be more consistent with
the spirit of the Hubbard model than those obtained by fitting
the tight band parameters onto the real bands. Indeed, origi-
nally the Hubbard model was obtained by working in a
Wannier-function representation for the field operators in the
second quantized Hamiltonian, neglecting in the quadrilinear
interaction, all terms in the creation and destruction operators
not falling on the same site. Clearly, this approximation has a
meaning only if one starts from the very localized Wannier
basis functions, which is the case of NMTO orbitals, pro-
vided they reproduce the “correct” band structure relevant to
the problem at hand. On the contrary, fitting this latter with
tight-binding parameters may lead to hopping coefficients
which are not derived from truly localized Wannier orbitals
�in this case the corresponding Wannier wave functions have
usually a finite amplitude over several distant neighbors�.25

From this perspective, the fact that we get the wrong so-
lution with the “good” parameters and the good solution with
the “wrong” parameters, appears to be an indication that
some fundamental interaction for the ground state of V2O3
was not taken into account in the Hubbard model. This in-
teraction, however, was, probably, restored by the choice of
the “wrong” Mattheiss’s parameters. Since Mattheiss’s wave
functions, compared to NMTO wave functions, are more de-
localized, with non-negligible amplitudes over distant neigh-
bors, we might guess that the interaction is a correlated dis-
tant neighbor interaction, and in a sense, the simple Hubbard
Hamiltonian with Mattheiss’s parameters represents acciden-
tally the good effective model for V2O3.

(b) The downfolding to a t2g set should have been per-

formed on a many body, rather than a single-particle basis; it
is not sufficient that NMTO downfolding provides a local-
ized Hubbard-type basis. If one agrees that the molecular
ground state of V2O3 is stabilized because of nonlocal inter-
actions �e.g., correlated hopping along the vertical bond�, the
physics of which cannot be captured within a method based
on local interactions, then the NMTO downfolding, belong-
ing to the same class of LDA-density-functional theory ab
initio methods, must necessarily share all shortcomings of
local correlated approaches. Stated differently, nonlocal cor-
relations would lead to nonlocal one-particle effective poten-
tials that might substantially modify the shape and the range
of Wannier-type functions and, therefore, the corresponding
t2g transfer integrals in the case of V2O3.

One step in this direction has been provided by a new
generation of correlated nonlocal quantum chemical ab initio
calculations. In this approach a combined exact diagonaliza-
tion ab initio method �EDABI� by Spalek et al.26 is used as a
promising method to estimate correlated hopping. This latter
is based on a definite procedure of construction of the many-
particle trial wave function expressed in terms of an adjust-
able one-particle basis, followed by the solution of a self-
adjusted nonlocal and nonlinear wave equation obeyed by
the basis functions. We believe that the EDABI method is
particularly well suited for treating situations in which the
interparticle correlations are not weak and lead to nonlocal
interactions.
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